Quarzstaub-Belastung auf Baustellen verringern

Reducing Respirable Crystalline Silica Dust Effectively

Ein gemeinsames Projekt von EFBWW und FIEC, den Europäischen Sozialpartnern der Bauwirtschaft

Autoren: Dr. Reinhold Rühl, Deutschland Dr. Olaf Wirth, Ökopol, Christine Le Forestier, FIEC Rolf Gehring, EFBWW

Steuerungskommitte Dr. Reinhard Obermaier ISHCCO

Dr. Reinhard Obermaier, Leiter Fachbereich Bau, Präsident ISHCCO
Sicherheitswissenschaftliches Forum und VDSI NRW Forum am 22.09.2022

Inhalt

- Staub auf Baustellen
- Einige Daten
- Die Praxis
- Staubarme Techniken
- Inhalte des Projektberichts
- STOP Prinzip und bewährte Tätigkeiten
- Die Europäische Listung Mapping
- Zusammenfassung und Auftrag
- Danksagung

Erkrankungen durch Staub auf Baustellen

Aus vielen Veröffentlichungen geht hervor, dass es auf Baustellen durch Siliziumdioxid verursachte Krankheiten gibt und dass ihre Zahl nicht abnimmt.

Anteil kristalliner Kieselsäure in Baumaterialien

- ▶ Die Diskussionen des Siliziumdioxidgehalts in Baumaterialien ist eigentlich überflüssig.
- ▶ Es muss immer staubarm gearbeitet werden.

Grenzwerte für Kieselsäure, lungengängigen und einatembaren Staub

- ▶ Die Grenzwerte in den europäischen Ländern sind unterschiedlich: Siliziumdioxid 0,05 - 0,1 mg/m³, lungengängig 1,25 - 6 mg/m³, einatembar 5 - 10 mg/m³
- Das Ziel muss sein: unterhalb des niedrigsten Grenzwerts zu arbeiten.

Sicherheitswissenschaftliches Forum und VDSI NRW Forum Quarzstaub-Belastung auf Baustellen verringern

22.09.2022

Expositionsdaten und praktische Erfahrungen

	Park (Korea) 2006	Network Italiano 2007	Alazard (FR) 2021	Flanagan (USA) 2006
	Meeker (USA) 2009	CooperM (USA) 2012/2015	Thorpe (GB) 1999	McLean (NZ) 2017
	SUVA (CH)	CooperJ (USA) 2015	Radnoff (Can) 2014	Szadkowska (PL) 2006
	Deurssen '14 (NI)	Tjoe (NI) 2003	Lumens (NI) 2001	Echt (USA) 2004/2007
task/job	BG BAU (Germ)	Kirkeskov (Danem) 2016	Beaudry (Can) 2013	Betten (Germ) 2005
	R12: 0.04-0.59; GM 0.22			I07: GM 3.0
Bricklayer	S12: 0.01-0.04; GM 0.02		S16: 0.017 - 1.0; GM 0.105	R07: GM 1.3
	S05: 1.0 - 4.0; m 2.83	R01: 69.60	R06: 8.0 - 58.0	R05: 21-115; GM 43.2
Cutting stones, dry	S05: 0.45 - 1.6; m 0.94	S01: 44.37	S06: <0.5 - 4.8	S05: 5.7-38; GM 12.7
	S05: 0.09 - 0.61; m 0.26	R04: 1.81 - 5.97; m 3.81	R04: 0.6, 1.3, 1.9, 6.4	R05: 2.9-11; GM 5.73
Cutting stones, wet	S05: <0.05 - 0.14; m 0.09	S04: 0.920 - 3.405; m 2.161	S04: <0.3, <0.3, <0.4, <0.6	S05: 1.0-2.2; GM 1.62
Cutting stones with	S05: <0.05 - 0.17; m 0.11		R02: 0.2, 0.7	R05: 1.9-3.6; GM 2.58
extraction	S05: <0.05 - 0.15; m 0.08		S02: <0.35, <0.5	S05: 0.79-1.1; GM 0.95
	R46: 0.02-10.86; GM 0.86		R03: 0.25, 5.01, 18.5	R95: GM 1.82
Drilling in concrete	S46: 0.01- 1.36; GM 0.20	S05: 0.42 - 0.84; m 0.68	S03: <0.02, 0.02, 0.90	S97: GM 0.20
	R58: 4.26 - 367.5; GM 50.0			R10: GM 5.5
Concrete grinding	S58: 0.1 - 17.62; GM 2.06			S10: 0.012-3.21; GM 0.657
	R02: 0.69, 2.32	R32: 10.9 - 183.3; GM 41.3; 95 106.8	R53: n.d 18.9; GM 3.1	I05: GM 11.0
Milling slots	S02: 0.10, 0.32	S15: 1.058-5.198; GM 2.423; 95 5.035	S53: n.d 6.9; GM 0.7	R05: GM 2.9
	R05: 11.08 - 22.91	R11: 0.2 - 21.6; GM 3.94; 95 17.3		R04: <0.55-2.82; m 1.56
Milling slots with extraction	S05: 1.88 - 3.89	S02: 0.346, 0.672		S04: <0.016-0.35; m 0.137
mixing mortar / glue /		R08: <0.18 - 5.02; m 1.78	R05: 0.45 - 1.83	R32: GM 1.39
concrete		S02: 0.02, 0.048	S05: <0.009 - 0.03	S32: GM 0.04
	S05: 3.06 - 7.24; m 4.99	R10: 0.55-8.0; GM 2.4		R 97: GM 6.05
Tuckpoint grinding	S05: 5.25 - 25.8; m 10.9	S10: 0.089-1.6; GM 0.35	S97: 0.00 - 24; GM 0.25	S101: GM 0.60
	D11E.0.20.21.2. CM 1.10.0E.12.2	R05: 0.55-4.00; GM 1.5	R36: 0.2 - 10.6; GM 2.1	
Inner wall construction	R115:0.30-21.2; GM 1.18; 95 12.3	S05: 0.016-0.084; GM 0.036	S36: n.d 0.2; GM 0.04	
	R21: 0.03-4.67; GM 0.22	I38: 0.08 - 8.40; GM 1.26		
Carpenter	S21: 0.01-0.09; GM 0.02	R25: <0.09 - 1.5; GM 0.27	S11: 0.013 - 0.041; GM 0.023	

Mit

- 271 Expositionsdatensätzen aus
- 55 Quellen werden
- 150 Tätigkeiten auf Baustellen beschrieben

Expositionsdaten und praktische Erfahrungen

Messungen beim Rückbau von Gerüsten

	N	Firmen	Bau- stellen	mg/m³
RCS	6	1	2	<0.83 - <0.125
resp. dust	12	4	6	<0.86 - <2.5

22.09.2022

Sicherheitswissenschaftliches Forum und VDSI NRW Forum Quarzstaub-Belastung auf Baustellen verringern

Expositionsdaten und praktische Erfahrungen

Messungen beim Mörtel mischen, Mischmaschine mit Absaugung

A Staub	14	0.5 - 1.05	0.68	1.05
	N	Bereich	Mittelwert	95%

aber - das Zusammendrücken der Tüten verbleibt als eine Quelle von Staub

Expositionsdaten und praktische Erfahrungen

- Für diese und einige andere staubarme Techniken gibt es keine oder nur wenige Expositionsdaten
- Die praktische Erfahrung zeigt jedoch, dass die Anwendung solcher Maßnahmen die Expositionssituation deutlich verbessert.
- ▶ Daher wurden solche Techniken bei der Ableitung der guten Praxis berücksichtigt (wobei hervorgehoben wird, dass für eine umfassende wissenschaftliche Bewertung möglicherweise mehr Daten erforderlich sind).

Sicherheitswissenschaftliches Forum und VDSI NRW Forum Quarzstaub-Belastung auf Baustellen verringern

22.09.2022

Liste der staubarmen Techniken

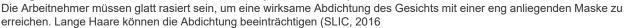
- Staubarm reinigen mit dem Bau-Entstauber
- Nass arbeiten
- ▶ Handgeführte Maschinen mit Absaugvorrichtung
- Löcher bohren mit wenig Staub
- Luftreiniger
- Vorabscheider bei viel Staub
- Staubschutzwände
- Staubarmes Mischen
- Silos, Ein-Weg-Container
- Einstreuen von Quarzsand
- Staub auf Baustellenfahrstraßen
- Flüssigboden

https://www.bgbau.de/themen/sicherheit-und-gesundheit/staub/staubarme-bearbeitungssysteme

Inhalt des Projektberichts

- Diskussion von
 - Krankheiten in Verbindung mit Siliziumdioxid und
 - ▶ Siliziumdioxidgehalt von Baumaterialien
- Auflistung der europäischen Grenzwerte für Stäube
- ▶ 271 Expositionsdatensätze aus 55 Quellen beschreiben Tätigkeiten auf Baustellen
- Staubarme Techniken
- ▶ Ausführliche Erörterung der mangelnden Wirksamkeit des Atemschutzes auf Baustellen (insbesondere angesichts der heutigen Mode, Bärte zu tragen)
- Innovationen und Probleme

22.09.2022


Sicherheitswissenschaftliches Forum und VDSI NRW Forum Quarzstaub-Belastung auf Baustellen verringern

Bewährte Verfahren gemäß dem STOP-Prinzip

In vielen Veröffentlichungen wird als Sicherungsmaßnahme zum technischen Schutz zusätzlich Atemschutz gefordert.

- Lorsque que les mesures de protection collective ne suffisent pas à éliminer le risque, mettre à la disposition du personnel des EPI adaptés; INRS, 2018)
 - Wenn die kollektiven Schutzmaßnahmen nicht ausreichen, um das Risiko zu beseitigen, dem Personal geeignete PSA zur Verfügung stellen; INRS, 2018)
- ▶ Meistens wird in denselben Papieren, auf die mangelnde Wirksamkeit des Atemschutzes auf Baustellen hingewiesen.
- Workers must be clean-shaven to get an effective seal to the face with a tight-fitting mask. Long hair can interfere with the seal (SLIC, 2016)

Bewährte Verfahren gemäß dem STOP-Prinzip

- Weder Arbeitgeber noch Arbeitnehmer verstehen, warum sie die Absaugung an den handgeführten Werkzeugen verwenden und trotzdem Atemschutz tragen sollen nach dem STOP-Prinzip müssen technische Maßnahmen vor persönlichen Maßnahmen ergriffen werden
- ▶ Wenn Zweifel bestehen, ob eine technische oder organisatorische Maßnahme ausreicht, werden Luftreiniger als Ersatzmaßnahme empfohlen, um staubarmes Arbeiten zu erreichen
- ▶ Darüber hinaus schützen Luftreiniger auch benachbarte Gewerke, Anwohner und die Umwelt

11

- ► Kombination von technischen Maßnahmen -
- Presslufthammer mit Absaugung und Luftreiniger

22.09.2022

Sicherheitswissenschaftliches Forum und VDSI NRW Forum Quarzstaub-Belastung auf Baustellen verringern

Tätigkeitsbezogene Expositionen

 Beschreibung der Staubexposition bei Tätigkeiten auf Baustellen (33 Kapitel)

Fräsen von Fugen / Tuckpoint Grinding

Das Fräsen von Fugen ist ein Sonderfall des Schlitzfräsens. Um Wasserschäden vorzubeugen, ist es bei der Außenrenovierung von Gebäuden häufig erforderlich, den beschädigten Mörtel zwischen den Mauersteinen zu entfernen und anschließend durch neuen Mörtel zu ersetzen.

	CooperM (US) 2015	Easterbrook (GB) 2009	Collingwood (US) 2007		
	Deurssen (NL) 2014	Beaudry (CD) 2013	Flanagan (US) 2006		
	Meeker (US) 2009	Croteau (US) 2002	Shields (US) 1999		
activity	BG BAU (DE)	Tjoe (NL) 2003	Echt (US) 2007		
Tuckpoint	S05: 0.19 - 0.50; m 0.33	R14: GM 6.11 "low	R06: <0.02-1.3; GM 0.49		
grinding with	S05: 0.28 - 0.85; m 0.47	S14: GM 1.02 ventilation"	S06: <0.01-0.72; GM 0.41		
extraction			· ·		
Tuckpoint	S07: <0.069 - 0.137; m 0.091				
grinding with	S05: 0.224 - 0.738; m 0.375				
extraction					
Tuckpoint	I01: 0.66; R01: <0.25	R13: GM 3.01 "high	R22: 0.31 - 4.50 GM 1.0		
grinding with	S01: <0.009	S13: GM 0.47 ventilation"	S22: <0.01-0.86: GM 0.06		
extraction					
S: silica; R: respirable; I: inhalable		GM: geometric mean; m: mean			

Das Fräsen von Fugen ist ohne Schutzmaßnahmen mit einer sehr hohen Staubbelastung verbunden. Frühere Veröffentlichungen von Messungen mit Absaugungen an den Schleifmaschinen (seit 1999) zeigen zwar eine erhebliche Reduzierung der Staubbelastung, die Grenzwerte werden aber immer noch deutlich überschritten. Die Daten von Croteau et al. (2002) machen dies besonders deutlich. Auch Nassarbeit führt nicht zu sicherem Arbeiten.

Auflistung der Bautätigkeiten / Mapping Leitfaden für staubarmes, möglichst staubfreies Arbeiten

- ▶ Mit einigen Techniken ist möglich, nahezu staubfrei zu arbeiten.
- ▶ Reicht eine technische Maßnahme nicht aus, um die Grenzwerte zu unterschreiten, so müssen technische Maßnahmen kombiniert werden.
- Ziel ist es,
- staubarm zu arbeiten und
- Staubfreisetzungen zu vermeiden,
- Staubimmissionen zu verhindern,
- Auf Atemschutz verzichten zu können

Sicherheitswissenschaftliches Forum und VDSI NRW Forum Quarzstaub-Belastung auf Baustellen verringern

13 22.09.2022

Auflistung der Bautätigkeiten / Mapping

silica dust effectively on construction sites in 12 Sprachen - Tech

22.09.2022

Sicherheitswissenschaftliches Forum und VDSI NRW Forum Quarzstaub-Belastung auf Baustellen verringern

Die Zukunft jetzt

Staubfrei, staubarme Baustellen sind möglich

Und übrigens

Sicherheits- und Gesundheitsschutz-Koordination auf Baustellen

hat zur Aufgabe
- übergreifende Risiken und
- übergreifende Schutzeinrichtungen
zu koordinieren.

Staub betrifft alle Beschäftigten der Baustelle Vision Zero ist gemeinsam durchzuführen

Staubfreiheit und Vision Zero sind vom SiGeKo zu koordinieren VDSI und ISHCCO

Sicherheitswissenschaftliches Forum und VDSI NRW Forum Quarzstaub-Belastung auf Baustellen verringern

Danksagung

22.09.2022

17

Ich freue mich auf Ihre Fragen und Anmerkungen.

Vielen Dank für Ihre Aufmerksamkeit.

Mein spezieller Dank an: Dr. Reinhold Rühl, EFBWW, FIEC

Dr. Reinhard Obermaier VDSI Fachbereich Bau Leitung Dr. Reinhard Obermaier Tel: +49 6190 919973 5 E-Mail : FB-Bau@VDSI.de

