
Industrie 4.0: Arbeit und betriebliche Arbeitspolitik im gesellschaftlichen Umbruch

Prof. Dr. Hartmut Hirsch-Kreinsen Wirtschafts- und Industriesoziologie TU Dortmund

Von Industrie 1.0 zu Industrie 4.0

3. Industrielle Revolution durch Einsatz von Elektronik und IT zur weiteren Automatisierung der Produktion

4. Industrielle Revolution auf der Basis von Cyber-Physischen Systemen

Industrie 4.0

Industrie 3.0

Industrie 2.0

Industrie 1.0

durch Einführung mechanischer Produktionsanlagen mit Hilfe von Wasser- und Dampfkraft

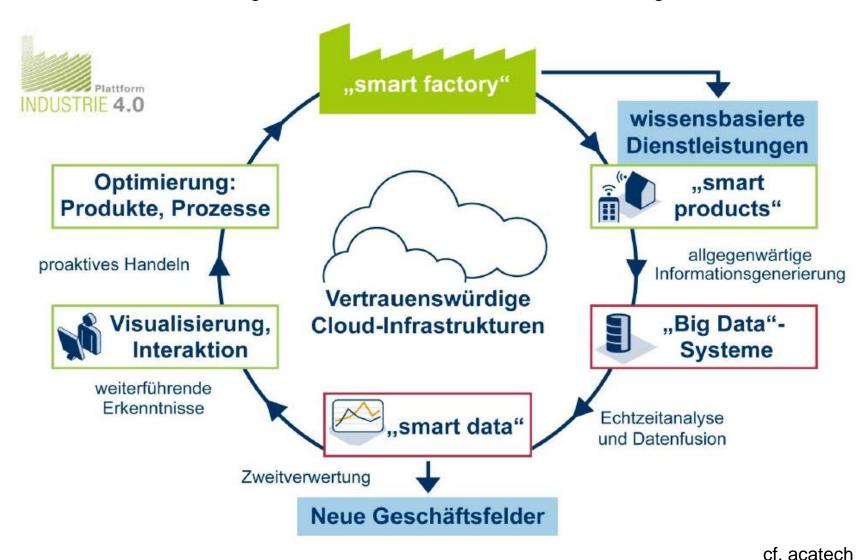
1. Industrielle Revolution

Beginn 20. Jhdt. Beginn 70er Jahre 20. Jhdt.

Heute

Quelle: DFKI/Bauer IAO

Ende 18. Jhdt. Grad der Komplexität

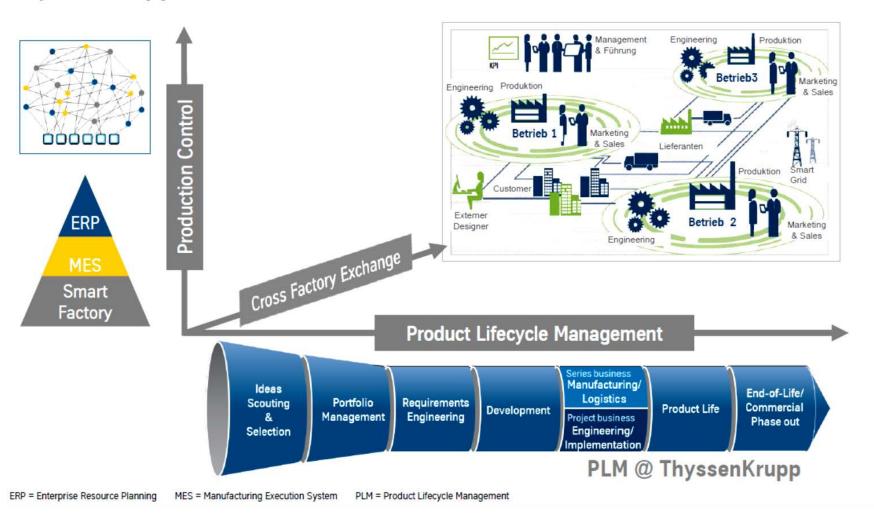

Technologische Basis

- ➤ Industrielle Anwendung des Internets
- ➤ Vernetzung und durchgängige Datenflüsse über die Wertschöpfungskette und den Produktlebenszyklus, Simulation und virtuelle Abbildung
- > Sensortechnologien und Nutzung von Big Data-Methoden
- ➤ Integration der virtuellen mit der realen/physischen Welt der Produktion
- ➤ Cyber-Physical-Production-Systems: eingebettete, lernfähige, Systeme und Komponenten

"Smart factory" als Teil eines vernetzten Systems

Hirsch-Kreinsen, Mai 2015

Zielsetzungen von Industrie 4.0


- Individualisierung von Produkten Losgröße 1
- Dynamische Gestaltung von Geschäfts- und Engineering-Prozessen
- Optimierte Entscheidungsfindung
- Ressourcenproduktivität und -effizienz
- Wertschöpfungspotenziale durch neue Dienstleistungen
- Demografie-sensible Arbeitsgestaltung
- Verbesserung der Work-Life-Balance
- Steigerung der Wettbewerbsfähigkeit Deutschlands als Hochlohnstandort

(Forschungsunion/achatech 2014)

Die drei Kernelemente der Implementierung von Industrie 4.0 bei ThyssenKrupp

cf. Achatz 2014

Hirsch-Kreinsen, Mai 2015

Vision einer grundlegenden Innovation industrieller Prozesse

- ➤ Autonome Selbstoptimierung und Konfiguration von Produktionssystemen
- > Deutliche Absenkung der Automatisierungsschwelle
- ➤ Planung und Ausführung parallel und in Echtzeit und nicht mehr in sequentieller Abfolge
- Gesamte Wertschöpfungskette als integriertes Anwendungsfeld: Produktion, Planung und Steuerung, Engineering, Logistik und Wertschöpfungskette

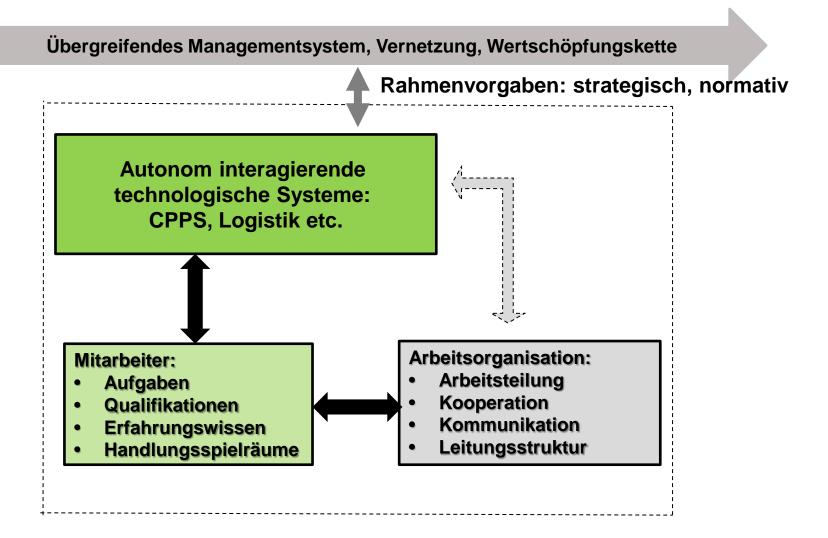
Weitreichender Wandel von Arbeit

Mainstream: Qualifizierte Arbeit unverzichtbar für Industrie 4.0

- > "Menschenleere" Fabrik nicht realistisch
- > Wegfall von Routinetätigkeiten
- Zunahme von Entscheidungsspielräumen und von dispositiven Aufgaben
- ➤ Neue Formen der Kommunikation und Kooperation
- Neue Qualifikationen: Integration von IT- und Produktionswissen

Mensch in der "Rolle des Erfahrungsträgers, Entscheiders und Koordinators" (Kagermann, 2014)

Aber:


- > "Upgrading" kein Automatismus und Selbstläufer
- Zwar "technology push", jedoch keine eindeutige Entwicklungsrichtung von Arbeit
- Kein "Technikdeterminismus", vielmehr Existenz von Gestaltungsspielräumen für Arbeit
- Entwicklung von Arbeit abhängig von Gestaltungszielen und entsprechenden Strategien

Ganzheitliche Gestaltungsstrategie erforderlich

Industrie 4.0 als Soziotechnisches System

Hirsch-Kreinsen, Mai 2015

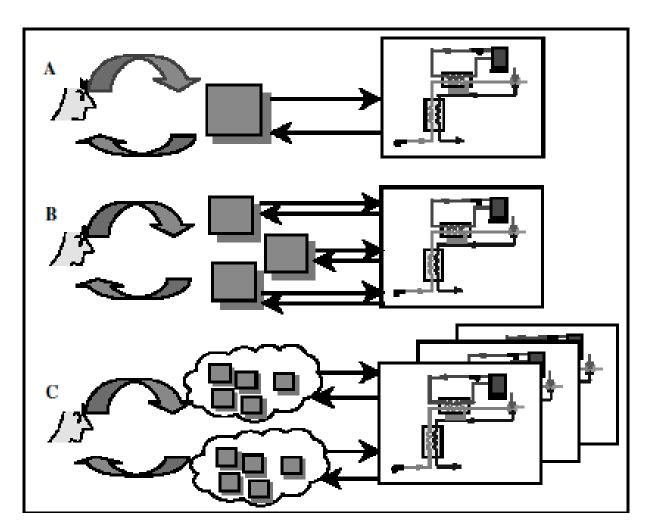
Umfassende Perspektive auf Arbeit

Gestaltungsebene	Funktionen
Mensch-Maschine- Schnittstelle	Funktionsteilung Mensch-Maschine
Operative Ebene	Shopfloor, Sicherung des laufenden Systembetriebs
Indirekte Bereiche	Planung, Steuerung, Prozessentwicklung, Produktdesign, generell Engineering
Leitungsebenen	Unteres und mittleres Produktionsmanagement

Mensch-Maschine-Schnittstelle

(cf: ten Hompel/Hirsch-Kreinsen, 2014)

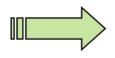
Gestaltungskriterien


- Blick auf das Gesamtsystem und Transparenz über die Abläufe erforderlich?
- Situationsbezogene Gestaltungskriterien z.B.
 - Aufgabenangemessenheit
 - Selbstbeschreibungsfähigkeit
 - Steuerbarkeit, Fehlertoleranz
 - Erwartungskonformität
 - Individualisierbarkeit
 - Lernförderlichkeit etc.
- Gestaltung von Assistenzsystemen entscheidend,
 - z.B. Handlungsvorgaben vs. Handlungsunterstützung

(z.B. Ulich, 1997; Grote, 2009; Stich, 2013; Grundsätze der Dialoggestaltung, DIN ISO 9241-110)

Herausforderung bei steigender Systemkomplexität

- Interdependente Faktoren
- Mangelnde Transparenz
- und Vorhersehbarkeit
- Informationen oft mehrdeutig
- Fehlen von relevanten Informationen


(cf. Lee, 2001)

"Ironien der Automatisierung"

Bewältigung von "Complacency" und Sicherung von "Awareness"

- Einerseits routinehafte Überwachungstätigkeiten und mangelnde Systemtransparenz, monotone "Normalsituation" mit abnehmendem Systemverständnis
- Andererseits unerwartete und kritische Systemzustände mit fehlendem Verständnis, Handlungsmöglichkeiten und mangelnder Reaktionsfähigkeit

"Kontrollentzug" durch Technik impliziert hohes Störpotential

(z.B. Bainbridge; Böhle/Rose; Cummings/Bruni; Grote; Pfeiffer)

Hirsch-Kreinsen, Mai 2015

Operative Aufgaben und Tätigkeiten

- > Zum einen: Partielle Substitution einfacher, repetitiver Aufgaben, z.B. Logistik, Maschinenbedienung, Datenerfassung
- Zum zweiten: Erosion qualifizierter Aufgaben, Standardisierung
 Verbleib begrenzt qualifizierter "Residualaufgaben",
 verbleibende Überwachungstätigkeiten
- ➤ Zum dritten: Aufgabenerweiterung, Nutzung von Assistenzsystemen als "Fähigkeitsverstärker", breitere Überwachungsaufgaben und Handlungsspielräume, "informierter Entscheider", Integration von Produktionswissen und IT-Kompetenzen

Differenzierte vs. ganzheitliche Tätigkeiten?

Kompetenzen und Qualifikationen

- Entwertung von Fachqualifikationen: spezielles Fachwissen unnötig, z.B. standardisierter Systembetrieb
- Chancen für Qualifizierung: generelles "Upgrading", erweiterte Fachqualifikationen, hohe Bedeutung von Erfahrungswissen, neue IT-Kompetenzen, neue Anforderungen in Einführungsphasen, Störungsbewältigung, Systemschnittstellen
- Anforderungen an neue Formen informeller Kooperation und Kommunikation sowie "ad-hoc Lernen" zur Beherrschung der komplexen Systeme (Lee/Seppelt, 2009: 420)

Anlernung vs. Qualifizierung?

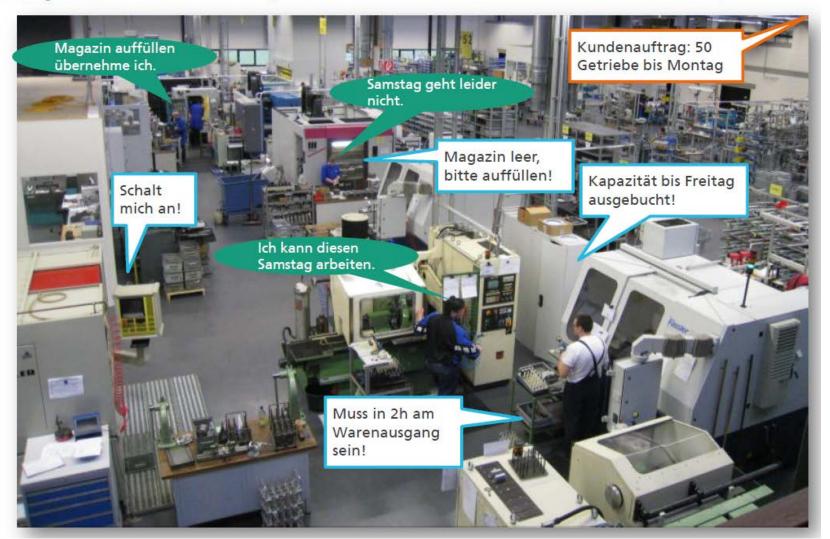
Industrie 4.0

Anwendungsbeispiele für die Montage

Flexible
Personaleinsatzsteuerung
über App (KapaflexCy)

Digitales Shopfloor Management mit Ist-Daten in Echtzeit

Störungsmanagement Rückführung aktueller Informationen aus dem Unternehmen


Arbeitsprozesse

Quelle: FhG IAO 2014

Beispiel: Vernetzte Objekte und Menschen entscheiden kooperativ

Quelle: FhG IAO 2014

Indirekte Bereiche: Planung, Steuerung, Prozessentwicklung

- Zum einen: Abbau von Aufgaben Abgabe von dispositiven Kompetenzen "nach unten", Hierarchieabbau und Dezentralisierungsschub Automatisierung von Planungs- und Steuerungsfunktionen
- Zum zweiten: Verdichtung von Entscheidungsaufgaben, Einschränkung von Handlungsspielräumen durch Vorgaben und Assistenzsysteme
- Zum dritten: Erweiterung von Entscheidungsspielräumen, neue Kenntnisse der Systemlogik und Blick auf das Gesamtsystem erforderlich

Auf- oder Abwertung von Planung und Steuerung? (cf. Bauer/Schlund, 2015)

Indirekte Bereiche: Engineering und Produktentwicklung

- Arbeitsverdichtung und echtzeitnahe Interaktion
- Reduktion von Routinetätigkeiten und Fokus auf Projektarbeit
- Neue Qualifikationsanforderungen, z.B. Projektarbeit, Nutzung von IT-Systemen und Kundenintegration
- Verringerung vonAufwand durch Simulation und Prototyping
- Intensivierung von Kooperation durch Datenintegration und beschleunigung
- Entkopplung von Arbeitszeit und -ort

Ausdifferenzierung von Engineeringtätigkeiten?

(cf. Bauer/Schlund, 2015)

Produktionsmanagement

- Substitution von Leitungsebenen in Folge von Dezentralisierung – Erhöhung der Leitungsspannen
- Entlastung von Routinen und Fokus auf Problemlösungen
- Wachsende Bedeutung von "Soft Skills", insbesondere Kommunikationsfähigkeiten
- > Verstärkte Teamorientierung, "offene Führungskultur"
- Beschleunigung von Entscheidungsprozessen
- Abkehr vom "Silodenken", prozessübergreifende Orientierung

Unverzichtbar: Aufwertung des Personalmanagements

Divergierende Organisationsmuster

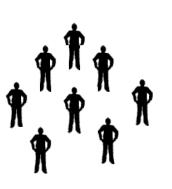
Polarisierte Organisation

Hochqualifizierte und spezialisierte Experten mit hohen Handlungsspielräumen

Ingenieure, Facharbeiter mit neuen Kompetenzen

Abgewertete Fachkräfte

Angelernte



Schwarm-Organisation

Hochqualifiziertes und spezialisiertes Personal mit hohen Handlungsspielräumen

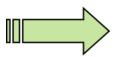
Ingenieure, Facharbeiter mit neuen Kompetenzen

Übergreifende Handlungsebene

Keine eindeutigen Folgen, sondern Wahlmöglichkeiten

Zentrale Stellhebel für die Arbeitsgestaltung:

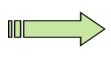
- Design des technologischen Teilsystems
- Verlauf des Einführungsprozesses
- Beteiligung und Partizipation der Mitarbeiter


Design des technologischen Teilsystems als Rahmenbedingung

Technologiezentriertes Design
bzw.

Automatisierungsszenario

Komplementäres
Design
bzw.
Humanzentriertes
Szenario


Zielsetzung: situationsspezifisches und handlugs-zentriertes Systemdesign

Gestaltungs- und Einführungsprozess

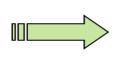
- ➤ Hohe Ressourcen sowie breites technologisches Know-how erforderlich
- Langwierige und aufwendige Abstimmung mit bestehenden Strukturen
- Nutzung modular anpassbarer und flexibel integrierbarer CPS-Funktionen
- "organizational co-innovation" (Brynjolfsson/McAffee, 2014)

Partizipative Systemgestaltung und -einführung

Herausforderungen und Risiken

- Dequalifizierung und Verlust von Erfahrungswissen
- Automatisierung, insbes. Verlust einfacher Arbeitsplätze
- Entgrenzung und Flexibilisierung von Arbeit "work-lifebalance"?
- Steigende Anforderungen an subjektives Arbeitshandeln Verdichtung von Arbeit
- Völlig ungeklärt: Datenschutz und Kontrollpotential
- Regelungen und Praxis der Mitbestimmung?
- Unklare Anforderungen an die Berufsbildung

Chancen von Industrie 4.0


- ➤ Voraussetzung für eine humanorientierte Arbeitsgestaltung in verschiedensten Dimensionen
- Erhalt und Ausbau sozialpolitisch wünschenswerter Beschäftigung
- Nutzung der Gestaltungspotenziale von Industrie 4.0 zur Steigerung der Attraktivität von Industriearbeit angesichts wachsender Knappheit von Fachkräften
- ➤ Weiterentwicklung des Industriestandortes Deutschland als Entwickler, Anbieter und Nutzer industrieller Prozess-innovationen

Reichweite der Systemeinführung?

- ➤ Bislang ungeklärte Reichweite und Einsatzfelder der neuen Systeme
- Umstellungsprobleme und Kompatibilität mit bestehenden Daten-/IT-/Produktionssystemen
- Vorbehalte und Desinteresse bei vielen KMU
- Divergenz und/oder Konvergenz verschiedener Rationalisierungsprinzipien – Lean vs. Industrie 4.0 ?

"Digitale Inseln" mit unterschiedlichen Formen der Arbeit?

Hartmut Hirsch-Kreinsen, Peter Ittermann, Jonathan Niehaus (Hg.)

Digitalisierung industrieller Arbeit

Die Vision Industrie 4.0 und ihre sozialen Herausforderungen

Baden-Baden: edition sigma in der Nomos

Verlagsgesellschaft 2015

ISBN 978-3-8487-2225-9 ca. 275 S., kt. € 19,90

Hirsch-Kreinsen, Mai 2015